翻訳と辞書
Words near each other
・ Diffusion flame
・ Diffusion hardening
・ Diffusion layer
・ Diffusion limited enzyme
・ Diffusion line
・ Diffusion map
・ Diffusion Monte Carlo
・ Diffusion MRI
・ Diffusion of innovations
・ Diffusion of responsibility
・ Diffusion Pharmaceuticals
・ Diffusion Pictures
・ Diffusion process
・ Diffusion pump
・ Diffusion transistor
Diffusion wavelets
・ Diffusion welding
・ Diffusion-controlled reaction
・ Diffusion-limited aggregation
・ Diffusionless transformation
・ Diffusiophoresis
・ Diffusive gradients in thin films
・ Diffusivity
・ Diffuson
・ Diffutidin
・ Diffutin
・ Diffwys
・ Diffwys West Top
・ Différance
・ Différences (Berio)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Diffusion wavelets : ウィキペディア英語版
Diffusion wavelets
Diffusion wavelets are a fast multiscale framework for the analysis of functions on discrete (or discretized continuous) structures like graphs, manifolds, and point clouds in Euclidean space. Diffusion wavelets are an extension of classical wavelet theory from harmonic analysis. Unlike classical wavelets whose basis functions are predetermined, diffusion wavelets are adapted to the geometry of a given diffusion operator T (e.g., a heat kernel or a random walk). Moreover, the diffusion wavelet basis functions are constructed by dilation using the dyadic powers (powers of two) of T. These dyadic powers of T diffusion over the space and propagate local relationships in the function throughout the space until they become global. And if the rank of higher powers of T decrease (i.e., its spectrum decays), then these higher powers become compressible. From these decaying dyadic powers of T comes a chain of decreasing subspaces. These subspaces are the scaling function approximation subspaces, and the differences in the subspace chain are the wavelet subspaces.
Diffusion wavelets were first introduced in 2004 by Ronald Coifman and Mauro Maggioni at Yale University.
== Algorithm ==
This algorithm constructs the scaling basis functions and the wavelet basis functions along with the representations of the diffusion operator T at these scales.
In the algorithm below, the subscript notation \Phi_a and \Psi_b represents the scaling basis functions at scale a and the wavelet basis functions at scale b respectively. The notation ()_ denotes the matrix representation of the scaling basis \Phi_b represented with respect to the basis \Phi_a. Lastly, the notation ()_^ denotes the matrix represents of the operator T, where the row space of T is represented with respect to the basis \Phi_a, and the column space of T is represented with respect to the basis \Phi_b. Otherwise put, the domain of operator T is represented with respect to the basis \Phi_a and the range is represented with respect to the basis \Phi_b. The function QR is a sparse QR decomposition with \epsilon precision.

// Input:
// T is the matrix representation of the diffusion operator.
// \epsilon is the precision of the QR decomposition, e.g., 1e-6.
// J is the maximum number of scale levels (note: this is an optional upper bound, it may converge sooner.)
// Output:
// \lbrace\Phi_j\rbrace is the set of scaling basis functions indexed by scale j.
// \lbrace\Psi_j\rbrace is the set of wavelet basis functions indexed by scale j.

\lbrace\Phi_j\rbrace, \lbrace\Psi_j\rbrace \leftarrow \text ( T , \epsilon , J ):
\textbf j\leftarrow 0 \text J-1:
()_, ()_^" TITLE="T^">)_^}" TITLE="T^}^" TITLE="T^">)_^" TITLE="\Phi_">)_\right)^2
()_ \leftarrow QR\left(I_-()_\left(()_\right)^
*, \epsilon\right)
\textbf


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Diffusion wavelets」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.